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Abstract. We study the excitation modes in parabolic quantum wells via an approach based on
the invariant-imbedding method in the random-phase approximation. For large values of wave
vectors, several higher-multipole edge plasmon modes have been observed for the first time
below the intrasubband plasmon in parabolic quantum wells in addition to the normal surface
plasmon modes. It is shown that the edge electron density profile has an important effect on the
higher-multipole edge plasmon modes.

1. Introduction

In recent years, there has been increasing interest in the investigation of electron systems
of wide remotely doped parabolic quantum wells (PQW) [1–4] both experimentally and
theoretically; the main reason for this is that parabolic quantum wells are structures that
behave like uniform-density electron slabs. This grows out of attempts to realize the
theoretical construction of jellium, consisting of a highly mobile dilute electron gas in
the potential of a positively charged background. The excitation modes play a significant
role in the transport and optical properties in these electron gas systems, and have received
considerable attention recently [5–13]. Two collective modes were experimentally observed
in the far-infrared (FIR) transmission spectra of PQW and had been identified as the normal
surface plasmons [5]. The low-frequency mode is called an intrasubband plasmon, the
excited resonant oscillation of the quantum well in the 2D plane (thex–y plane), while the
high-frequency mode is called an intersubband plasmon, which evolves out of transitions
between adjacent bound levels in the well which correspond to oscillations of the electrons
perpendicular to the interface (thez-direction). Kaloudiset al [6] studied the resonant
coupling of collective intra- and intersubband excitations in a parabolically confined electron
system. The dimensional resonances have been directly observed by use of a grating-coupler
technique [7]. Recently, Liaoet al [8] studied the dispersion and magnetic field dependence
of both inter-Landau-level and intersubband magnetoplasma modes in a wide parabolic
quantum well by inelastic light scattering. Breyet al [9] theoretically demonstrated that
an electron gas in an ideal parabolic quantum well absorbs light only at the bare harmonic
oscillator frequency. Calculations within the time-dependent local density approximation
(TDLDA) and the random-phase approximation (RPA) yielded an excitation spectrum with
two major peaks for a small wave vector and for frequencies up to the bulk plasma frequency
[10–13]. The locations of these relatively strong peaks are consistent with experimental
observations and also agree well with the theoretical predictions for the plasma modes of a
uniform slab of Drude electrons. Recently, Xia and Quinn [14] studied the resonant modes
below the 2D bulk plasmon for 2D electron gas with a non-abrupt edge density profile
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using a simple optical model. However, as far as we know, there has been no investigation
of the corresponding resonant modes below the intrasubband plasmon in the quantum well
using the RPA. In the present work, we will study the excitation spectra of PQW with large
values of wave vectors via an approach based on the invariant-imbedding method [10]. In
contrast to the case for previous calculations, several weak resonant modes below the 2D
intrasubband frequency are observed in the excitation spectra with large wave vectors, and
these resonant modes will be explored in our calculation.

In the following section, we will outline the numerical method based on the invariant-
imbedding method. In section 3, we will discuss the origins and properties of the
weak excitation modes appearing below the intrasubband plasma mode. Finally we will
summarize our results in section 4.

2. The numerical method

For Ga1−xAl xAs quantum wells, the effective massm∗ is about 0.067m0 and the dielectric
constantε0 is around 13.0, which give an effective Bohr radiusa0 of approximately 100̊A
in such materials. Since the effective Bohr radius is much larger than the lattice constant,
we can ignore the crystalline structure of the host, and treat the conduction band edgeEc of
the quantum well as an external potential energy, confining the motion of the electrons in the
conduction band, on the basis of the envelope function approximation [15]. According to
Poisson’s law, the external potential of a quantum well can be mimicked as the potential due
to the background positive chargen+ in a slab. In the calculation, such fictitious positive
charge densityn+ is used to parametrize the parabolic quantum well. For a given PQW with
n+ andNs , the total number of electrons per unit area, the approximate widthL = Ns/n+

that the electrons occupy is taken to be the width of the quantum well. Within the constant-
effective-mass approximation, the self-consistent Kohn–Sham eigenfunction may be written
as

9J ≡ 9k‖,j (r) = 1

2π
exp(ik · ρ)ψj (z) (1)

with eigenenergy

EJ ≡ E(k‖, j) = εj + 1

2
k2
‖ (2)

wherer is a position vector, andρ andz are the projections ofr parallel and normal to the
well respectively, whilek‖ is the projection ofk parallel to the well.εj is the eigenenergy
of the one-dimensional Schrödinger equation with a self-consistent potential, andψj (z) is
the corresponding eigenfunction. The self-consistent electronic structures of quantum wells
are calculated via an approach based on the invariant-imbedding method.

For independent electrons moving in the self-consistent ground-state potential, the
density responseδnf to a small time-dependent external perturbation

δv = vx(z, q‖) exp
[
i(q‖ · r − ωt)

]
(3)

can be written as

δnf (z, q‖, ω) =
∫

dz′ 50(q‖, z, z′, ω)vx(z
′, q‖) (4)

where the free-response function is given by

50(q‖, z, z′, ω) = 1

2π2

occ∑
i

ψi (z)ψi (z
′)

∫
dk‖

{∑
j

ψj (z)ψj (z
′)

ε+ − εj
+

∑
j

ψj (z)ψj (z
′)

ε− − εj

}
(5)
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where

ε± = εi ± (ω + k‖ · q‖) − 1

2
q2

‖ . (6)

It is noted that the two terms in the braces of equation (5) are just the Green’s functions
for the one-dimensional Schrödinger equation with energies ofε+ and ε− respectively.
Therefore the free-response function can be written as

50(q‖, z, z′, ω) = 1

2π2

occ∑
i

ψi (z)ψi (z
′)

∫
dk‖

[
G+(z, z′, ε+) + G+(z, z′, ε−)

]
. (7)

For the calculation of the free-response function, we choose thex-axis such thatkx is
parallel toq‖. So equation (7) can be rewritten as

50(q‖, z, z′, ω) = 1

π2

occ∑
i

ψi (z)ψi (z
′)

∫ ki

−ki

dkx

√
k2
i − k2

x

[
G+(z, z′, ε+) + G+(z, z′, ε−)

]
(8)

where

ki = √
2(εf − εi) (9)

ε± = εi ± (ω + kxq‖) − 1

2
q2

‖ . (10)

The above function is evaluated on a discrete grid ofz- andz′-points. In order to produce
numerically tractable results, a small imaginary part of 0.002 au∗ (starred Hartree units; see
below) has been added toω, the frequency of the external field. Since the free-response
function has a cusp atz′ = z, the z′-integral will be split into two separate parts atz′ = z,
and the integration overz′ is done by Gaussian quadrature. The Green’s functions are
obtained by the invariant-imbedding method [10]. The integration of the Green’s function
G+(z, z′, ε+) along the real axis in thekx-plane from−ki to ki is deformed to a semicircle in
the upper complex half-plane. Because the Green’s functions are much smoother functions
of kx along such an integral path than along the real axis, only a few points need to be
sampled in the integration. In contrast,G+(z, z′, ε−) is analytic in the lower complex
half-plane. Using the basic property of Green’s functions

G∗(z, z′, ε) = G(z, z′, ε∗) (11)

we compute the Green’s functionG+(z, z′, ε−) in the same way asG+(z, z′, ε+).
Similar to equation (4), the RPA density response function is defined as

δnRPA(z, q‖, ω) =
∫

dz′ 5RPA(q‖, z, z′, ω)v(z′, q‖). (12)

It can be proved that the RPA response function is related to the free-response function by
the integral equation

5RPA(z, z′, q‖, ω) = 50(z, z′, q‖, ω)

+
∫ ∫

dz1 dz2 50(z, z1, q‖, ω)υ(z1, z2)5
RPA(z2, z

′, q‖, ω) (13)

where

υ(z1, z2) = ∂2

∂n2
(nεxc)δ(z1 − z2) + 2π

q‖
exp(−q‖|z1 − z2|) (14)
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is the function describing the dependence of the potential field on the electron density for a
quantum well.εxc is the exchange–correlation kernel. Ignoring frequency dependence,εxc

is chosen to be the simple Wigner form [16] for both the ground state and the excited state:

εxc = −0.458

rs

− 0.44

rs + 7.8
(15)

where

rs ≡ rs(z) =
[

4

3
πn(z)

]−1/3

. (16)

n(z) is the self-consistent electron density. The RPA response function is calculated by
solving the matrix equation (13).

In order to simulate spatially non-uniform excitation of a quantum well, the external
perturbation potential is chosen to be

vx(z, q‖) = exp(q‖z). (17)

So the strength function can be calculated from

M(q‖, ω) = −Im
∫ ∫

dz dz′ exp(q‖z)5RPA(z, z′, q‖, ω) exp(q‖z′). (18)

This strength function can be directly obtained from experimental measurements. The
same function appears in the dipole theory of electron energy loss [17] as well as the theory
of infrared (IR) absorption aided by a grating coupler [18, 19].

In the Ga1−xAl xAs system, the effective massm∗ and dielectric constantε vary
according to [20]

m∗(x)/m0 = 0.067+ 0.0838x (19)

and

ε(x) = 13.18− 3.12x (20)

respectively, wherem0 is the mass of an electron. In our calculation, the effective mass
m∗ and dielectric constantε have been taken to be constants:m∗ = 0.067, andε = 12.9.
For convenience, we use ‘starred Hartree units’, au∗, in which e2/ε = 1, m∗ = 1, h̄ = 1.
So 1 au∗ of length is equal to 102̊A, 1 au∗ of energy is 11 meV, which is equivalent to a
photon with the reciprocal wavelength 88.5 cm−1.

3. Results and discussion

We start with a parabolic quantum well (PQW) of widthL = 8.8 au∗ and density
n+ = 0.0275 au∗. The excitation spectrum with a small wave vector ofq‖ = 0.016 au∗ is
shown in figure 1. Two peaks appear in the spectrum for a very wide range of frequencies.
They are the normal surface plasma modes, i.e. the intersubband plasma mode and the
intrasubband plasma mode. The positions of these peaks are in good agreement with the
experimental data [5]. The resonant frequencies of the excitation modes in PQW can also
be estimated via a non-retarded, local optical model of a uniform slab of Drude electrons.
In this model, the dielectric function within a slab of thicknessd can be written as

ε = ε0(1 − ω2
p/ω2) (21)

where

ω2
p = 4πn (22)
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Figure 1. Excitation spectra for PQW with widthd = 8.8 au∗, densityn+ = 0.0275 au∗,
q‖ = 0.016 au∗, and Im(ω) = 0.002 au∗.

Figure 2. A comparison of the dispersion relations of RPA calculations (dots) and those from the
local optical model (solid lines) for the intersubband plasmon modes (upper) and the intrasubband
plasmon modes (lower) with widthL = 8.8 au∗ and densitiesn+ = 0.0275 au∗.

is the bulk plasma frequency, andn is the electron density of the slab. Assuming a spatially
local response and neglecting incoherent scattering, the dispersions of the two normal plasma
modes are given by

ω2
± = 1

2
ω2

p(1 ± exp(q‖d)). (23)

In figure 2, we compare the dispersion relations of the normal plasma modes calculated
within the RPA with those from equation (23). It can be seen that the simple local optical
model describes the positions of the resonant modes quite well for smallq‖. However, it
underestimates the excitation frequency for largeq‖.

In the following, we will consider the excitation modes in parabolic quantum wells with
large wave vectors.
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Figure 3. Excitation spectra for PQW with widthL = 8.8 au∗, densityn+ = 0.0275 au∗,
q‖ = 0.10 au∗, and Im(ω) = 0.002 au∗. The inset shows the three weak resonant peaks P1, P2
and P3 below the intrasubband plasmon mode.

3.1. The excitation spectrum for large wave vectors

In figure 3, we report the calculated excitation spectra of PQW with widthL = 8.8 au∗ and
densityn+ = 0.0275 au∗ for a large value of the wave vectorq‖ = 0.10 au∗. In addition
to the normal surface plasmon modes, three weaker peaks P1, P2, P3 appear below the
intrasubband mode. These modes are located at frequencies of 0.046 au∗, 0.081 au∗ and
0.212 au∗ respectively. To explore their physical origins, we calculate the induced density
profile, which is defined as

1n(z) = ∂2(δn(z))

∂(Re(ω))2
. (24)

1n(z) is used instead ofδn(z) because the responseδn(z) to the external field will be
richest in the induced density profile when Re(ω) is at resonance, and resonant peaks show
up more clearly in the above definition for weak resonances, and non-resonant baselines
are approximately filtered out by the second frequency derivative, whileδn(z) is dominated
by the eigenfunction for strong resonances. Shown in figure 4 are the induced density
profiles of the three peaks. We first analyse the peaks P2 and P3. The induced density
profile of P3 in figure 4(c) is identical to that of the excitation mode observed in neutral
quantum wells [10–12], which was identified as a multipole plasma mode. The multipole
plasma mode was predicted theoretically on simple surfaces [21, 22] and first observed
experimentally by Tsueiet al [23] on K and Na surfaces. Schaich and Dobson [13]
suggested that the intersubband transition from the first subband to the fourth subband is also
another reasonable interpretation for that excitation mode. If one compares the values of
1ε1,4 = E4 − E1 = 0.538 au∗ with the frequency of P3, it is clear that this interpretation is
unreasonable. The intersubband transition picture obviously also fails to explain excitation
mode P2, because there are three subband energies below the Fermi energy level and the
induced density profile of any intersubband transition is more complex than that of peak
P2. It is interesting to note that peaks P2 and P3 have very special properties. The induced
density profile P2 is an even function ofz, while that of P3 is an odd function ofz. Since
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Figure 4. Induced density profiles at the frequencies of the three peaks (a) P1, (b) P2 and (c)
P3 in the excitation spectra of figure 3.

they are located below the intrasubband plasmon mode, we associate peaks P2 and P3 with
higher-multipole edge plasmon modes.

The higher-multipole plasmon modes are so named since, unlike the normal surface
plasmons, the integrals of their induced densities with respect to each surface are nearly
zero. The higher-multipole edge plasmon modes are essentially bulk 2D plasmons of the
low-electron-density surface region [24]. Regular edge plasmons were first studied by
Mast et al [25], and by Glattliet al [26]. The regular magnetoplasma edge modes of two-
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Figure 5. The dispersion relation Re(ω) versusq‖ for the higher-multipole edge plasmon modes
P1, P2 , P3 and the intrasubband plasmon mode (dashed line) in the excitation spectrum in
figure 3.

Figure 6. Excitation spectra for PQW with widthL = 8.8 au∗, densityn+ = 0.0075 au∗,
q‖ = 0.10 au∗, and Im(ω) = 0.002 au∗.

dimensional electron gas (2DEG) were investigated by Wuet al [27, 28]. Recently, Xia and
Quinn [14] investigated the higher-multipole edge modes of a 2DEG with a non-abrupt edge
density profile using a simple optical model. They found a sequence of higher-multipole
edge modes, which exist as well-defined edge excitations at finite values ofq‖. Necessary
conditions for the existence of higher-multipole modes include both a spatially varying
electron density and dispersion of the bulk plasmon [24]. For a three-dimensional electron
gas a non-local conductivity is required for dispersion of the bulk plasmon. In contrast, for a
2DEG the bulk plasmon frequency depends on the wave vector even in a simple local theory
of conduction. In the parabolic quantum well, the quantum effect causes the electrons in the
well to spread outside the well and form an electron gas with an edge density profile. So
it is reasonable that higher-multipole edge plasmon modes appear in the excitation spectra
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Figure 7. Induced density profiles of (a) the even higher-multipole edge plasmon mode ME1
and (b) the corresponding odd mode MO1 below the intrasubband plasmon in the excitation
spectra of PQW with widthL = 8.8 au∗, n+ = 0.0075 au∗.

of PQW. It is expected that there are more interesting features in the edge plasmon modes
for narrow quantum wells due to the symmetric environment on both sides of the quantum
well. The edge plasmons will appear in the edge regions of both surfaces and the symmetry
on both sides of the quantum well causes the frequencies of the edge plasmon modes to
be same on both sides, so in the case of a narrow quantum well, the electromagnetic fields
of the two surfaces interact and the frequency splits into two modes: a high-frequency
mode whose induced electron density is asymmetric with respect to the planez = 0 and a
low-frequency mode whose induced electron density is symmetric with respect to the plane
z = 0. Resonant modes P2 and P3 are a case in point. Taking into account that they
have another interesting characteristic, i.e. their induced density profiles integrate to nearly
zero with respect to each surface separately, we can identify them as being even and odd
higher-multipole edge plasmon modes respectively. The induced density profile of peak P1
is an even function ofz, and is located below the even edge plasmon mode P2. So we can
identify P1 as another even higher-multipole edge plasmon mode.

In figure 5, we present the dispersion profiles of peaks P1, P2, P3 and the intrasubband
plasmon as well. It is noted that two even edge plasmon modes P1 and P2 emerge first at
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a small value ofq‖, while the first odd edge plasmon mode P3 corresponding to the even
edge plasmon mode P2 appears atq‖ ∼= 0.10 au∗. However, we have not observed the
corresponding odd edge plasmon mode P1 even when we increaseq‖ up to 0.20 au∗. It is
also noted that these modes have a positive dispersion relation, and the dispersion profiles
of edge plasmon modes are similar to those found using local optical model by Xia and
Quinn [14]. This again supports our identification of these edge plasmon modes.

Figure 8. The dispersion relation Re(ω) versusq‖ for the higher-multipole edge plasmon modes
and the intrasubband plasmon mode (the dashed line) in the excitation spectra of PQW with
width L = 8.8 au∗, n+ = 0.0075 au∗.

3.2. The density dependence of edge plasmons

We now study the edge plasmon modes in PQW with width 8.8 au∗ and lower density
n+ = 0.0075 au∗. The excitation spectrum withq‖ = 0.10 au∗ is shown in figure 6. Only
one resonant mode ME1 located at the frequency 0.040 au∗ appears below the intrasubband
plasmon. Calculation with the same well width and electron density but a largerq‖ (0.20
au∗) shows that another resonant mode MO1 appears at the frequency 0.121 au∗ in the
excitation spectrum. The induced density profiles of these modes are presented in figure 7.
It is easy to identify the resonant modes ME1 and MO1 as even and odd higher-multipole
edge plasmon modes respectively. The dispersion profiles of the two edge plasmon modes
are shown in figure 8. The system can support only one even edge plasmon mode for
small values ofq‖. The corresponding odd edge plasmon mode appears at a larger wave
vector q‖ ∼= 0.20 au∗. It is noted that the parabolic quantum well with higher electron
density (n+ = 0.0275 au∗) can support more edge plasmon modes than the well with lower
electron density (n+ = 0.0075 au∗). The dispersions of edge plasmon modes in both figure
5 and figure 8 show the interesting tendency that the even edge plasmon modes can be
generated with small values ofq‖, whereas the corresponding odd edge plasmon modes
can only be supported by the system for larger values ofq‖. This tendency may explain
why the corresponding odd edge plasmon does not appear even at the large wave vector
q‖ = 0.20 au∗ for PQW with L = 8.8 au∗ andn+ = 0.0275 au∗.
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Figure 9. A comparison of the self-consistent edge electron distributions of PQW (the solid
line) and NQW (the dashed line) with widthL = 8.8 au∗ and densityn+ = 0.0075 au∗.

Figure 10. The excitation spectrum for NQW with widthL = 8.8 au∗, densityn+ = 0.0075 au∗,
q‖ = 0.10 au∗, and Im(ω) = 0.002 au∗.

3.3. The effect of the edge density on the edge plasmons

To investigate the effect of the edge electron distribution on the higher-multipole edge
plasmon modes, we calculate the excitation modes in the neutral quantum well (NQW) with
the same widthL and fictitious densityn+ as those of the PQW studied in section 3.2. In
figure 9, we compare the self-consistent electron distributions on the edges of PQW and
NQW. The edge layer of electron density in NQW is much wider than that in PQW. The
excitation spectrum withq‖ = 0.10 au∗ is shown in figure 10. It is interesting to note
that a new even higher-multipole edge plasmon ME2 atω = 0.137 au∗ emerges below the
intrasubband plasmon mode, in addition to the even higher-multipole edge plasmon ME1
at ω = 0.041 au∗, which have been observed in the PQW with the same conditions. This
demonstrates that the edge electron distribution plays an important role in the appearance
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of edge modes, and the values ofq‖ at which higher-multipole edge plasmon modes first
appear become smaller as the edge electron distribution becomes wider.

4. Summary

In conclusion, we have studied the excitation modes in the parabolic quantum well via
an approach based on the invariant-imbedding method. For large wave vectors, several
weak resonant modes have been observed below the intrasubband plasmon mode and are
identified as odd and even higher-multipole edge plasmon modes. It has been shown that
the even edge plasmons can be generated by the system for small values ofq‖. However,
the corresponding odd edge plasmons can only be supported for larger values ofq‖. There
exist more edge plasmon modes in the PQW with higher-density electron gas than in the
PQW with lower-density electron gas. Moreover, the edge electron distribution plays a key
role in the appearance of edge higher-multipole plasma modes, and the values ofq‖ at which
edge plasmon modes first appear become smaller as the edge electron distribution becomes
wider. Further study of the dependence of edge plasmon modes on the edge density profiles
is under way.
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